for customers is to add value in other areas, according to Ralph Fuller, business-development manager for IBM. "We know our government customers want to avoid proprietary protocols and private infrastructure," he said, "so we've focused on offering them solutions using TCP/IP and Java applications, which can run on any operating system."

By crafting flexible solutions, government agencies can change components without having to change the rest of the system. For example, field workers can start with PalmPilots and change to notebooks or another kind of hand-held device down the line.

The ultimate goal, Fuller said, is to tap into the benefits of wireless data solutions. These include improved productivity for field workers -- as much as 300 percent, according to some figures -- greater data access and increased accuracy of data as it moves between the field and headquarters. For law enforcement applications, safety is considered a prime benefit of wireless because it allows officers in the field to identify drivers and their criminal records by tapping into national crime databases.

Impact on Government

In today's harsh and often violent environment, it's no surprise that public safety officials place a high premium on safety in their jobs. Because of wireless technology's ability to reduce the safety-risk factor, public safety agencies in general, and law enforcement agencies in particular, are the biggest users of wireless data networks.

Beyond public safety, the most likely places you are going to find wireless solutions are in public utilities, inspections, probation, lotteries and a few IT departments. Within public safety, both fire and emergency medical services are beginning to deploy wireless applications.

Wireless LAN

How do you wire your government's departments together when the threat of natural disaster forces them out of their central location? If you're like the city of Berkeley, Calif., you turn to wireless networking.

In 1998, engineers found Berkeley's City Hall seismically unsafe to withstand a possible earthquake from the Hayward fault, just a few miles away. With little time to spare, the city quickly moved into seven different buildings.

Not surprisingly, this sudden move imposed some thorny technological challenges, not the least of which was how to network what had been 840 desktop PCs, more than 40 servers and an IBM AS/400. Pulling T1 lines under the streets to connect some buildings up to a half-mile away was out of the question, according to Chris Mead, the city's information systems manager.

Instead, Berkeley turned to a radio-based solution from RadioLAN. Using antennas the size of a hand, the city has linked several buildings using RadioLAN's BridgeLINK units, which are capable of transmitting at speeds of up to 10Mbps.

So far, 300 city workers are able to use the wireless bridges to support a variety of office applications. "We like the technology because it's quick and easy to install, and it's faster than T1," said Mead. The solution is also cost-effective, only about $5,000 per link. The only limitation is that the buildings must be within line of sight and the range is currently limited to a half-mile.

The RadioLAN solution is also a big step up from earlier versions of wireless links, according to Mead, who has experimented with infrared technology to transmit wireless data between buildings. Whenever it rained or when the sun set, the system stopped transmitting.

For example, American Medical Response, a private firm hired by cities and counties in 38 states to provide emergency medical services, has launched a mobile data-collection application using PalmPilots.

Initially, 300 of the company's field staff will use the Palms in San Mateo County, Calif., to capture information ranging from details about their dispatch to the patient's vital signs. The data is required under a new state law, according to Eric Gee, an operation analyst specialist with the company.

Tod Newcombe  |  Features Editor